

CADINENE DERIVATIVES FROM *SMALLANTHUS UVEDALIA*

X. A. DOMINGUEZ, S. HAFEZ,* H. SÁNCHEZ V. and J. SLIM

Instituto Tecnológico y de Estudios Superiores de Monterrey Sucursal de Correos "J" Monterrey, N. L. 64849, Mexico; *Institute for Organic Chemistry, Technical University of Berlin 1000 Berlin 12, Straße des 17 Juni 135, F.R.G.

(Received 18 August 1987)

Key Word Index—*Smallanthus uvedalia*; Compositae; cadinene derivatives, sesquiterpene lactones, sesquiterpenes.

Abstract—The aerial parts of *Smallanthus uvedalia* afforded in addition to known compounds five new cadinene derivatives. The structures were elucidated by high field ^1H NMR spectroscopy.

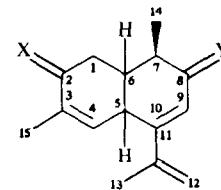
Smallanthus uvedalia (Li) Mackenzie (= *Polymnia uvedalia* (L.) L. has been investigated previously. The sample collected in West Virginia gave several melampolides [1-4]. We have now studied the same species collected in Mexico near Monterrey. Careful separation of the less polar fractions gave α - and β -santalene, α -bergamotene, α -bisabolene, humulene, β -farnesene, germacrene D, caryophyllene and squalene.

The next fraction afforded **1**, which has been prepared already from the carbinol [5], **3** [6] and five new cadinene derivatives, 2-oxo-verbococcidentafuran (**4**) 2-oxo-9,12-dehydroverbococcidentene **2** and the oxidation products **5-7**. Furthermore *p*-hydroxybenzaldehyde, *p*-hydroxybenzylalcohol and bornyl ferulate were present.

The structure of **2** clearly followed from the ^1H NMR spectrum (Table 1) which was close to that of **1**. However, due to the changed position of the keto group several signals were shifted drastically. The down field shift of H-4 showed that the keto group now was at C-2.

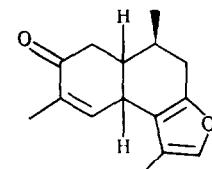
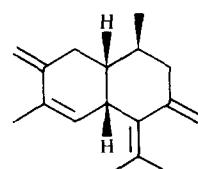
The spectrum of **4** (Table 1) was close to that of verbococcidentafuran [5]. The presence of a 2-keto group again clearly followed from the downfield shift of H-4 (δ 6.57 *ddq*). The H-1 signals were also shifted downfield (δ 2.58 and 2.77 *dd*).

The ^1H NMR spectrum of **5** (Table 1) together with the molecular formula ($C_{15}H_{18}O_2$) indicated that a lactone derived from verbococcidentafuran was present. Spin decoupling allowed the assignment of all signals, though some were overlapping multiplets. We have named compound **5**, 8,9-dehydroverbococcidenta lactone.

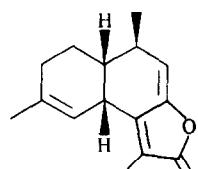

The ^1H NMR spectrum of **6** and **7** (Table 1) indicated that again lactones were present. In part the spectra were close to that of **4**. However, an additional oxygen function was at C-9. Accordingly, the H-8 signals were shifted upfield. As already indicated by the molecular formula, **7** was the methyl ether of **6**. Accordingly, in the spectrum of **7** a methoxy singlet at δ 3.11 was visible. The configuration at C-9 followed from the downfield shift of H-5.

EXPERIMENTAL

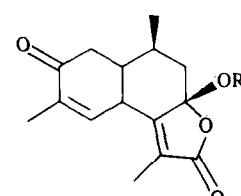
The aerial parts (860 g, collected at Chipinque, N. L., August, 1986, voucher 8137 in ITESM herbarium) were extracted with MeOH-isopropyl ether-petrol, (1:1:1). The resulting extract (16.0 g) was separated first by CC (SiO_2) into four fractions (1:



petrol and Et_2O -petrol, (1:9) 2: Et_2O -petrol, (1:1) 3: Et_2O and 4: Et_2O -MeOH, (9:1). TLC of fraction 1 (AgNO_3 coated SiO_2) gave 5 mg α - and 4 mg β -santalene, 7 mg α -bergamotene, 6 mg β -bisabolene, 6 mg humulene, 10 mg β -farnesene, 10 mg germacrene D, 5 mg caryophyllene and 5 mg squalene.

TLC of fraction 2 (Et_2O -petrol, 1:4), three developments gave 15 mg **1**, 5 mg **4** and a mixture which gave by HPLC (RP 18,



	X	Y
1	H_2	O
2	O	H_2


3

4

5

6 R = H

7 R = Me

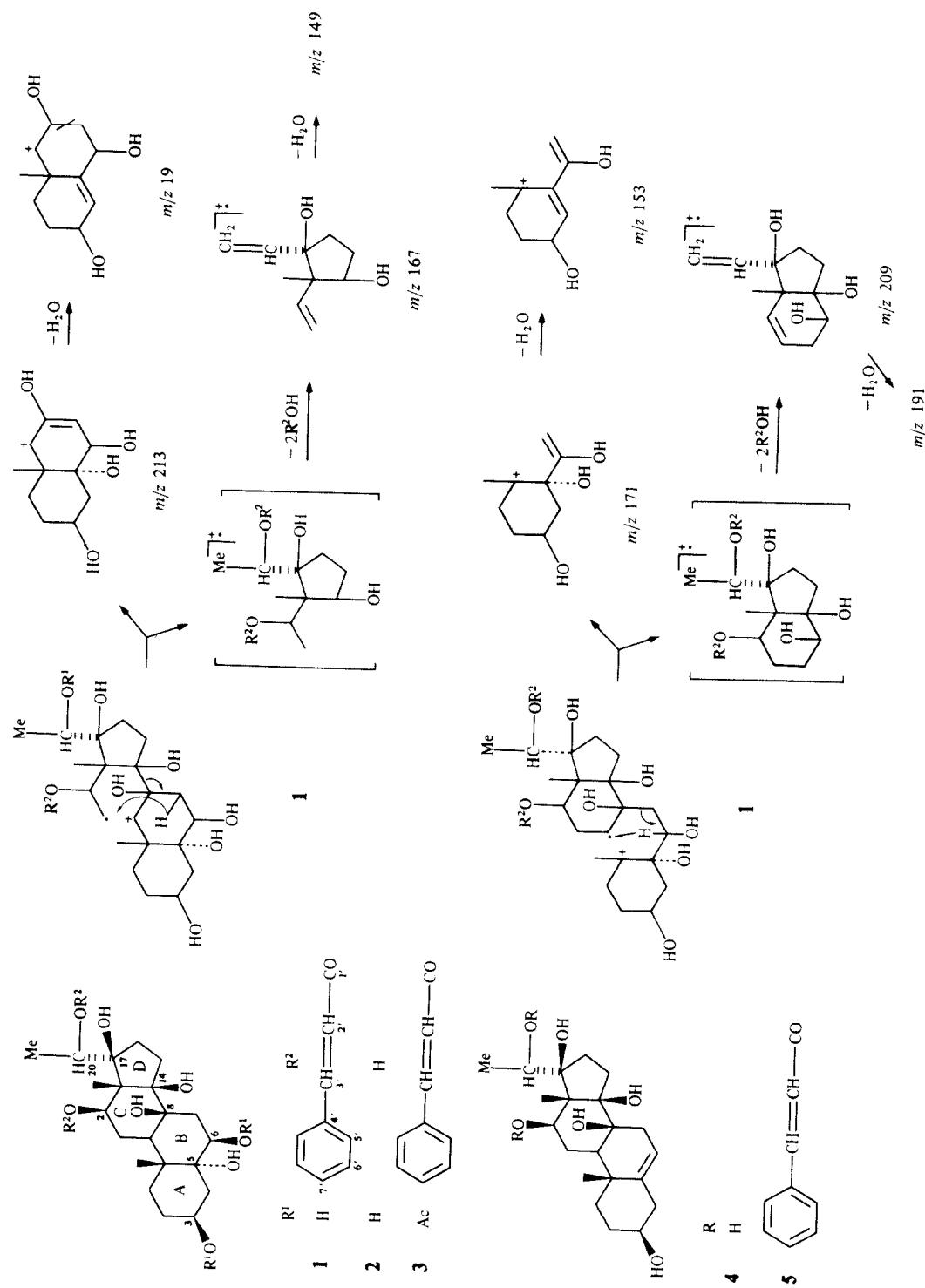


Table 1. ^1H NMR spectral data of **2** and **4–7** (400 MHz, CDCl_3 , *d*-values)

	2	4	5	6	7
1	2.80 <i>dd</i>	2.77 <i>dd</i>	1.95 <i>m</i>	2.85 <i>dd</i>	2.83 <i>dd</i>
	2.59 <i>dd</i>	2.58 <i>dd</i>	1.68 <i>m</i>	2.62 <i>dd</i>	2.59 <i>dd</i>
2	—	—	2.00 <i>m</i>	—	—
2'	—	—	—	—	—
4	6.49 <i>ddq</i>	6.57 <i>ddq</i>	5.22 <i>br s</i>	6.36 <i>br s</i>	6.28 <i>br s</i>
5	3.60 <i>br s</i>	3.64 <i>br s</i>	3.52 <i>br s</i>	3.98 <i>br s</i>	3.96 <i>ddq</i>
6	2.00 <i>m</i>	2.17	1.81 <i>m</i>	1.89 <i>m</i>	1.86 <i>m</i>
7	1.82 <i>m</i>	2.00 <i>m</i>	2.53 <i>ddq</i>	2.08 <i>m</i>	2.02 <i>dddq</i>
8	2.28 <i>ddd</i>	2.67 <i>br dd</i>	5.52 <i>d</i>	2.33 <i>dd</i>	2.44 <i>dd</i>
8'	1.86 <i>m</i>	2.23 <i>br dd</i>	—	1.44 <i>dd</i>	1.31 <i>dd</i>
9	5.94 <i>br s</i>	—	—	—	—
12	5.02 <i>br s</i>	7.08 <i>br s</i>	—	—	—
12'	4.98 <i>br s</i>	—	—	—	—
13	1.94 <i>br s</i>	2.04 <i>d</i>	1.94 <i>br s</i>	1.92 <i>br s</i>	1.97 <i>br s</i>
14	0.97 <i>d</i>	1.07 <i>d</i>	1.08 <i>d</i>	1.02 <i>d</i>	1.02 <i>d</i>
15	1.75 <i>dd</i>	1.78 <i>dd</i>	1.68 <i>br s</i>	1.82 <i>br s</i>	1.83 <i>dd</i>

J(Hz): compound **2**: 1,1 = 15.5; 1,6 = 2.5; 1',6 = 5; 4,5 = 4, 6 = 4, 15 ≈ 1.5; 5,15 = 2.5; 7, 14 = 6.5; 7,8 = 8, 9 = 4; 8,8' = 17; compound **4**: 1,1 = 15.5; 1,6 = 1',6 = 5, 6 = 6, 7 = 4.5; 4,15 = 5, 15 = 2; 4,6 = 1; 7,8 = 5; 7,8' = 9; 7,14 = 6.5; 8,8' = 16.5; 12,13 = 1.5; compound **5**: 6,7 = 7,14 = 7; 7,8 = 3.5; compound **6** and **7**: 1,1' = 16; 1,6 = 2.5; 1,6' = 5; 4,5 = 5.6 = 5, 15 = 2.5; 4,15 = 1.5; 6,7 = 7,8' = 12; 7,8 = 3.5; 7,14 = 7; 8,8' = 13.5.

MeOH– H_2O , 4:1), 5 mg **5** (*R*, 12.7 min), 3 mg **1** and 3 mg **2** (*R*, 15.0 min). HPLC of fraction 3 (MeOH– H_2O , 3:2) gave 6 mg *p*-hydroxybenzylalcohol, 8 mg *p*-hydroxybenzaldehyde, 4 mg **6** (*R*, 5.5 min) and 8 mg **7** (*R*, 7.0 min). TLC of fraction 4 (CH_2Cl_2)

gave 8 mg bornyl ferulate. Known compounds were identified by comparing the 400 MHz ^1H NMR spectrum with those of authentic material.

8-Oxo-9,12-dehydroverbococcidentene (**2**). Colourless oil, IR ν cm^{-1} (CCl_4) 1680 (C=CC=O); MS: *m/z* (rel. int.) 216 (8) (M) $^+$, 201 (5) [$\text{M} - \text{Me}$] $^+$, 159 (55) [201 – C_3H_6] $^+$, 145 (100) [$\text{M} - \text{C}_5\text{H}_{11}$] $^+$; $[\alpha]_D = +5.5$ (CHCl_3).

2-Oxoverbococcidentafuran (**4**). Colourless oil, IR ν cm^{-1} (CCl_4) 1670 (C=CC=O); MS: *m/z* (rel. int.) 230.131 (100) (M) $^+$ (calc. for $\text{C}_{15}\text{H}_{18}\text{O}_2$ 230.131), 215 (10), 188 (71), 187 (43), 173 (47).

8,9-Dehydroverbococcidentalactone (**5**). Colourless oil, IR ν cm^{-1} (CCl_4) 1760 (lactone); MS: *m/z* (rel. int.) 230.130 (14) (M) $^+$ (calc. for $\text{C}_{15}\text{H}_{18}\text{O}$, 230.130), 215 (9), 177 (28), 175 (30), 174 (100). $[\alpha]_D + 4$ (CHCl_3).

9-Hydroxyverbococcidentalactone (**6**). Colourless oil, IR ν cm^{-1} (CCl_4) 1760 (lactone), 1680 (C=CC=O); MS: *m/z* (rel. int.) 244.110 (24) ($\text{M} - \text{H}_2\text{O}$) $^+$ (calc. for $\text{C}_{15}\text{H}_{16}\text{O}_3$ 244.110), 109 (100), 91 (52) $[\alpha]_D = +7$ (CHCH_3).

9-Methoxyverbococcidentalactone (**7**). Colourless gum, IR ν cm^{-1} (CCl_4) 1780 (lactone), 1690 (C=CC=O); MS: *m/z* (rel. int.) 276.136 (2) (M) $^+$ (calc. for $\text{C}_{16}\text{H}_{20}\text{O}_4$ 276.136), 224 (4.5) [$\text{M} - \text{MeOH}$] $^+$, 135 (8), 57 (100).

REFERENCES

1. Bohlmann, F., Knoll, K. H., Robinson, H. and King, R. M. (1980) *Phytochemistry* **19**, 107.
2. Bohlmann, F., Knoll, K. H., Robinson, H. and King R. M. (1980) *Phytochemistry* **19**, 107.
3. Herz, W. and Bhat, S. V. (1970) *J. Org. Chem.* **35**, 2605.
4. Herz, W. and Bhat, S. V. (1973) *Phytochemistry* **19**, 115.
5. Bohlmann, F. and Lonitz, M. (1978) *Phytochemistry* **17**, 453.
6. Bohlmann, F. and Gupta, R. K. (1981) *Phytochemistry*, **20**, 1432.